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The complete nonlinear equations are used to study the oscillatory convective mo- 
tions arising in a system of two liquids with an interface. 

Finite-amplitude stationary convective motions in a two-layer system, heated from below, 
were investigated in [1]. The stationary motions, however, do not exhaust the entire set 
of possible flow regimes. For example, in solving the problem of convection in water at a 
temperature near 4~ oscillations were observed [2]. 

In this paper, based on the solutions of the complete nonlinear equations, we study the 
nonstationary convection in a system of two liquids with an interface. In a cavity with a 
prescribed wall ratio, transitions are realized with a change in the Grashof number between 
five flow regimes, differing by their spatial structure and ~heir variation as a function of 
time. It is found that the region of stochastic oscillations is bounded with respect to the 
Grashof number from below as well as from above by regions with regular oscillations of dif- 
ferent type. 

We shall examine a cavity with a rectangular cross section, heated from below and filled 
by two different viscous immiscible liquids. We assume that the interface between the liquids 
is horizontal and is not subjected to deformation (the surface tension is large); the thermo- 
capillary effect is not studied. Allboundaries of the cavity are solid boundaries. The 
horizontal boundaries are held at different constant temperatures (the temperature difference 
equals 0), and the temperature varies linearly along the vertical boundaries. The origin of 
coordinates is positioned at the interface, the x axis is oriented horizontally, and the y 
axis is oriented vertically. The upper liquid fills the region 0<x</, 0<y<at, and the lower 
liquid fills the region 0<x<l.--a2<y<0. 

The coefficients of dynamic and kinematic viscosity, thermal conductivity, temperature 
diffusivity, and volume expansion of the upper and lower liquids equal Di, wi, zi, %i, ~i (i=1,2}~ 
respectively. 

We introduce the following notation: ~I = D~/~, v =%/v2, ~ = • % = l,I%~, ~ =~/w L = I/a1, 
a = ~/a~. For the units of length, time, stream function, vortex velocity, and temperature, 
we select a I, a~/v~, %, %/a~, O, respectively. We shall write the complete nonlinear equations 
of free convection for the stream function ~i' the vortex velocity ~, and the temperature 
T i in dimensionless variables: 

i -- d:Acti + Gbi OT~ 
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w h e r e  d l  = b x = c 1 = 1; d2 = I / v ;  b= = 1/~;  c~ = I / x ;  0 = g~lOa~/v[, i s  t h e  G r a s h o f  n u m b e r ;  
the Prandtl number. The boundary conditions at the solid walls have the form: 

x = O ,  x ~ L ,  , ~ =  a*----i-=O ( i = l ,  2), 
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Dependence of S_(1) and S+(2) on t. 

Dependence of Sl on t (G = 9900). 

y = - - a ,  To.= 1, y =  1, TI=O, 

x = 0 ,  x = L ,  T I =  1 - - y  , T2 1- -xy  
1 + •  1 -6 •  

At the interface the normal components of the velocity vanish (nondeformable boundary), 
the tangential components of the velocity, the tangential components of the stresses, the 
temperatures, and the thermal fluxes are continuous: 

y = 0 ,  ~ h = ~ = O ,  O~l = , . 0 %  ,TI%=~.,, 
@ @ 

T,, = T2, • 01"1 = OT~ (3) 
Oy Oy 

The boundary-value problem formulated above is determined by seven physical(G, P, n,v,~, %,~) 
and two geometrical (L, a) parameters. 

System (i)-(3) was solved with the help of the method of finite differences. The com- 
putational procedure is described in detail in [i]. We used an explicit factorization meth- 
od with central differences. The calculations were performed on a uniform 32 x 32 grid. 
Poisson's equation was solved by the method of iterations (Liebman's scheme with successive 
upper relaxation). The accuracy of the iteration of Poisson's equation constituted 10 -7 . 
The velocity vortex at the solid walls was determined from Kuskova--Chudov's formula [3]. 
Conditions (3) were investigated to calculate ~i and T at the interface: 

% [x, O) 2 [ ~  (x, --Ay] + r (x, ay)] , 
(Ayl 2 (1 + ~1) 

~.~ Cx, 0) = n ~  (x, 0), 

Yl (x, 0) = T~ (x, 0} = %. (x, --Ay) + • (x, ay) 
1 + •  

Here Ay is the step in the grid along the vertical coordinate. The magnitude of the step 
in time was selected from the conditions of stability of the calculation. 

We shall describe the results obtained for the system water--silicon oil (Dow Corning 
N200) with the following set of parameters: ~=0.915; ~=LII6; • X=0.472; ~=7,i595, 
P -- 6.28 at L = 0.8. For the characteristics of the flow structure, we introduce the quanti- 

ties: r/2 I L I 

S~=j 'dx. ldY~;l(x,  Y,, $2---- J" d x ] d y ~ A ( x ,  Y}, 
o o L/2 o (4) 

S+=SI+S~, S =S~--S,. 
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Fig. 3. Phase trajectory. 
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Fig. 4. Dependence of Si on t (G = Ii,000) and the patterns of isolines at the 
points A, B, and C. 

For G < Go = 1700, mechanical equilibrium is conserved in the system. When the threshold 
Grashof number is exceeded, the equilibrium becomes unstable and a stationary convective mo- 
tion develops (regime i); in addition, the intensity of the motion in the upper liquid is 
much higher than in the lower liquid. This can be explained as follows. We introduce Ray- 
leigh's numbers, determined for the upper and lower liquids (see [i]): 

•  

For the selected values of the parameters, the ratio RI/R2~_102. As a result of this condi- 
tion, convection in the upper liquid is attained at much lower values of G than in the lower 
liquid. For this reason, intense convective motion due to volume (buoyancy) force develops 
only in the upper liquid, while only a weak flow, caused by the tangential stresses at the 
interface, exists in the lower liquid. We note that for stationary motion the difference be- 
tween the quantities S~ and $2, due to the difference in the boundary conditions at the hori- 
zontal boundaries of the upper layer, is small (ISI~S=I/SI<0,1); the motion in the upper liq- 
uid is primarily a single-vortex motion. 

As G increases, the motion becomes unstable and regular oscillations develop in the 
system (regime 2). The structure of the motion in the upper liquid changes considerably: 
the motion becomes a two-vortex motion and, in addition, the intensity of the vortices var- 
ies periodically with time. The quantity S_ (curve I in Fig. I; G = 5700), characterizing 
the contribution of the two-vortex component of the motion, is not small and its sign is con- 
served during the oscillations; the contribution of the single-vortex mode S+ (curve 2 in 
Fig. I) is sign-alternating. Hysteresis occurs between regimes 1 and 2. In the region G > 
6700 the oscillations become irregular (regime 3); the double-vortex flow structure remains. 
For higher values of G, the motion becomes a superpositionof the single- and four-vortex 
structure (regime 4). A fragment of the typical pattern of the change in the quantity $I 
with time is presented in Fig. 2. Figure 3 shows the phase trajectory for the given case. 
The number of oscillations in the regions $I > 0 and S~ < 0 varies irregularly. 

For G > G, = 10,025 • 5, the oscillations again become regular (regime 5; see Fig. 4). 
Thus, in the problem under examination, the region of irregular oscillations is bounded with 
respect to the parameter G both from below and from above. Figure 4 also shows the pattern 
of iso!ines corresponding to points A, B, and C. The oscillations retain their regular char- 
acter in the entire region of values of the Grashof number investigated (right up to G = 
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25,000). As G increases, the period of the oscillations decreases from 0.89 to 0.24 as G 
varies from 10,030 to 20,000. 

NOTATION 

x and y, Cartesian coordinates; 4, stream function;~ , velocity vortex; T, temperature; 
~, coefficient of dynamic viscosity; ~, coefficient of kinematic viscosity; ~ , coefficient 
of thermal conductivity; B, coefficient of volume expansion; e, temperature difference; G, 
Grashof's number; P, Prandtl's number; L and a, geometric parameters; X, coefficient of 
thermal diffusivity. The indices i and 2 refer to the upper and lower liquids, respectively. 
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APPLICATION OF THE PROJECTION-NET METHOD FOR SOLVING THE TRANSIENT 

HEAT-TRANSFER PROBLEM IN AN ANNULAR DUCT OF COMPLEX CONFIGURATION 

N. N. Davydova, A. A. Kochubei, 
and A. A. Ryadno 

UDC 536.24 

The influence of the geometrical characteristics of ducts on various parameters 
of the heat-transfer processes taking place in them is investigated. 

A topic of practical importance in the study of heat conduction and convective heat 
transfer is the influence of the geometrical characteristics of the investigated objects, 
ducts in particular, on various parameters of the processes involved [i]. To study the 
dependence of the temperature field on the geometrical characteristics and to obtain a re- 
alistic picture of the heat-transfer processes in a duct it is necessary to investigate 
simultaneously the processes of heat conduction in the wall and heat transfer in the fluid, 
i.e., to solve the problem in the conjugate formulation [2]. 

Analytical methods for the solution of conjugate transient (time-dependent) convective 
heat-transfer problems have not been adequately developed [2, 3], and their application is 
rendered difficult by the need to allow for the cross-sectional geometry and the boundary 
conditions specified on the outer surface of the wall. In our opinion, therefore, the pro- 
jection-net method is the most promising approach to the solution of the indicated problems; 
it combines the finite-element method (FEM) with the finite-difference method (FDM). 

The inherent capability of using irregular nets in the FEM permits the curvilinear 
boundaries of the computational domain to be effectively approximated, and the variational 
formulation of the problem makes it easy to take various types of boundary conditions into 
account. Another advantage of the FEM is the feasibility of forming the system of equations 
automatically; this is achieved by inspecting each element separately and applying a condi- 
tioning procedure that will ensure continuity of the function at the interelement boundar- 
ies. The FDM ensures the necessary speed and accuracy of the computations in analyzing the 
behavior of the heat transfer with time and in the direction of motion of the fluid. 
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